
Profiling gem5 Simulator
Johnson Umeike, Neel Patel, Alex Manley, Amin Mamandipoor, Heechul Yun, Mohammad Alian

Electrical Engineering and Computer Science Department
University of Kansas

Abstract—In this work, we set out to find the answers to the
following questions: (1) Where are the bottlenecks in a state-of-the-
art architectural simulator? (2) How much faster can architectural
simulations run by tuning system configurations? (3) What
are the opportunities in accelerating software simulation using
hardware accelerators? We choose gem5 as the representative
architectural simulator, run several simulations with various
configurations, perform a detailed architectural analysis of the
gem5 source code on different server platforms, tune both system
and architectural settings for running simulations, and discuss
the future opportunities in accelerating gem5 as an important
application. Our detailed profiling of gem5 reveals that its
performance is extremely sensitive to the size of the L1 cache. Our
experimental results show that a RISC-V core with 32KB data and
instruction cache improves gem5’s simulation speed by 31%∼61%
compared with a baseline core with 8KB L1 caches. Our paper is
the first step toward building specialized hardware and software
environments for accelerating software-based simulators.

I. INTRODUCTION

We are in the golden age of computer architecture [1]

where the continuation of Moore’s law is premised upon the

specialization of hardware for different application domains.

This simply means that computer architects are going to design

many more hardware in the years to come.

Software-based simulation is the backbone of computer

architecture research and development. Since the inception

of computer architecture as a field, many software-based archi-

tectural simulators1 and simulation techniques have emerged

[2]. Currently, various architectural simulators are in use by

academia and industry for modeling different aspects of future

computing platforms. gem5 [3], Sniper [4], MARSSx86 [5],

and ZSim [6] are just a few examples of architectural simulators

currently with active communities. Designing hardware requires

many hours of simulation and this figure will only increase in

the future due to the proliferation of open-source hardware [7]

and the need for domain-specific hardware design.

Improving simulation performance has been in the spotlight

from the early implementations of software-based simulators.

Throughout the years, many techniques such as parallelizing

simulation on multiple cores [6] or multiple nodes [8], [9],

using hardware virtualization support [10], [11], sampling

techniques [12], [13], [14], trading off simulation accuracy

for speed [15], [16], and using configurable hardware for

modeling flexible systems [17], [18], [19] have been proposed

and implemented to improve simulation performance. Previous

works often overlook simple software and system optimizations

that can significantly improve the simulation speed without

1Unless mentioned otherwise, throughout the paper, we refer to “software-
based architectural simulators” as “simulators”

introducing complex changes to the simulator. In this work,

we set to fill this gap.
gem5 is one of the most widely used architectural simulators,

providing a platform for modeling future computer systems [20].

gem5 also supports various modes of execution as well as

different levels of simulation detail. Due to the ubiquity

of gem5 and its large user base, we select gem5 as the

representative simulator for this work. We simulate different

workloads on gem5 with diverse configurations, profile gem5

code, and perform a detailed architectural analysis of the gem5

execution to find the bottlenecks in the official gem5 release.

We compare the simulation time, (measured as host seconds)

when running gem5 on two different platforms: Intel Xeon and

Apple M1 Chips. We perform a detailed comparison of the

architectural statistics between the platforms. We also run gem5

on FireSim [17], which is an FPGA-accelerated architectural

simulator, to investigate the sensitivity of gem5’s speed to some

architectural parameters. Finally, we use our profiling insights

to perform simple system tuning and propose architectural

recommendations to improve gem5 simulation speed.
This work is the first step towards better understanding

the characteristics of a state-of-the-art architectural simulator

and developing hardware and software solutions to meet

the growing demand for architectural simulation. Our major

contributions in this paper hinge upon answering the following

questions:

• Where are the bottlenecks in running gem5 on a Xeon
server? Our results show that gem5 is extremely front-

end (instruction) bound with large iCache and TLB miss

rates. Due to the huge code size, an abundance of virtual

functions, and runtime polymorphism in the source code,

there is no particular hot function or code block in gem5.

As a result, the decoder unit in an out-of-order processor

is under extreme pressure to supply μOps to the back-end,

and there is large misprediction and resteer overhead in

the pipeline’s front-end.

• How does the performance of gem5 vary in different
server platforms when running simulations? When

running architectural simulations, the focus is usually

on the configuration of the simulated system but the

configuration of the host is often ignored. Our results show

that the underlying physical hardware notably impacts

simulation time. For instance, a MacBook Pro with an M1

chip completes the same simulation 1.7×∼3.02× faster

than a server equipped with Xeon Gold 6242R CPUs and

96GB of DDR4 DRAM.

• How much faster can gem5 run by tuning the
architectural, system, and runtime configurations on
the host? Motivated by the observations from running

103

2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

979-8-3503-9739-0/23/$31.00 ©2023 IEEE
DOI 10.1109/ISPASS57527.2023.00019

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Pe

rf
or

m
an

ce
 A

na
ly

si
s o

f S
ys

te
m

s a
nd

 S
of

tw
ar

e
(I

SP
A

SS
) |

 9
79

-8
-3

50
3-

97
39

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

PA
SS

57
52

7.
20

23
.0

00
19

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

gem5 on different server platforms, we study the sensitivity

of gem5 speed to L1/L2 cache size, CPU frequency,

back gem5 code with huge pages, and recompile gem5

for optimization. Our results show that larger L1 data

and instruction caches can significantly speed up gem5

simulations.

• Long term solution? Lastly, we discuss some of the

solutions moving forward, such as designing specialized

accelerators for simulation.

The rest of this work is organized as follows. In Sec.II, we

discuss the motivation for this work and provide background

information on computer architecture simulators. In Sec.III, we

describe our methodology for profiling gem5 and collecting

experimental results. In Sec.IV, we analyze gem5 source

code and microarchitectural statistics and reveal the runtime

execution characteristics of gem5 running on different platforms.

In Sec.V we discuss the sensitivity of gem5 speed to varying

system and architectural configurations of the simulation server.

Sec.VI summarizes some of our takeaways and discusses future

directions for accelerating simulation speed. Sec.VIII concludes

this work.

II. MOTIVATION AND BACKGROUND

Simulation is extensively used in both academia and industry.

Although the bar for the accuracy of simulation in academic

research is lower, potentially impactful academic research

requires full-system modeling of various hardware and software

components [21]. Ideally, we would have a simulator that is

as fast as the real hardware, as flexible as a software imple-

mentation, and performant as the target hardware. However,

the speed of simulation, and complexity of implementation are

influenced by the required simulation detail [2].

We can classify architectural simulation into two cate-

gories: functional and timing. Functional simulation (i.e.,

emulation) models the functionality of future hardware. This

is mainly used for validating hardware functionalities and

software development and testing before the hardware is built.

Some examples are HASE[22], simCore [23], Barra [24],

Simics [25], AtomicSimple CPU configuration in gem5 [3].

Timing simulation (i.e., performance simulation) is used to

model the timing aspects of hardware while providing the

correct functionality. There are timing simulators with different

performance-modeling fidelity. Clearly, the complexity of a

simulator proportionally increases with its modeling fidelity.

Some examples are zSim [6], sniper [4], HAsim [18], gem5

[3], Simple Scalar [26]. Additionally, simulators can operate

in user-level or full-system mode. In the user-level mode, the

simulator only executes user-level code without modeling the

operating system. System calls are bypassed and serviced by

the underlying host. This mode is also referred to as system-call

emulation mode. On the other hand, a full-system simulator

models the entire computing system, including memory, and

I/O subsystems while running an unmodified operating system.

gem5 is a state-of-the-art architectural simulator with an

active user and developer community. It is extremely config-

urable, supports multiple ISAs, and can perform full-system

simulations with network and device modeling. This makes

Fig. 1: Geometric mean of the normalized simulation time when

running PARSEC and SPLASH-2x workloads on gem5. gem5

runs on Intel_Xeon, M1_Pro, and M1_Ultra. Atomic,

Timing, Minor, and O3 are gem5 CPU types.

gem5 a valuable tool for evaluating future accelerators, proces-

sor cores, system-on-chips, hardware/OS/network interactions,

and heterogeneous systems [20].

One observation that motivated this work is the drastic differ-

ence in simulation speed when running gem5 on different server

platforms. Fig.1 shows the geometric mean of the simulation

time of executing gem5 on a MacBook Pro (M1_Pro) and a

Mac Studio (M1_Ultra), normalized to the simulation time

on a Dell server equipped with Xeon Gold Scalable CPUs

(Intel_Xeon) across all nine (9) PARSEC and SPLASH-2x

workloads. Both MacBook and Mac Studio are equipped with

Apple M1 chips. More information on the workloads, simulated

system configuration, physical hardware configurations, and

experimental methodology are provided in Sec.III. We run gem5

in full-system (FS) and system-call emulation (SE) modes. An

important parameter in the tests performed is the number of

processes simultaneously running on each platform. In the left

most and right most sub-graphs of Fig.1, we run a single gem5

process on the host server, while in the middle sub-graphs,

we co-run one gem5 process per physical core and one gem5

process per hardware thread. There are 4, and 16 performance

cores in M1_Pro and M1_Ultra, and 20 physical cores

and 40 hardware threads on Intel_Xeon. Therefore for co-

running scenarios, we launch 4 (M1_Pro), 16 (M1_Ultra),

20 (Intel_Xeon for “gem5 processes = # of physical cores”

with SMT off configuration), and 40 (Intel_Xeon for “gem5

processes = # of hardware threads” with SMT on configuration)

gem5 processes.

As shown in the figure, regardless of whether SMT is turned

on or off for Intel_Xeon (it is worth noting that M1_Pro
and M1_Ultra does not support hardware multithreading),

simulation mode (full system vs. system-call emulation) or

simulation detail (Atomic vs. Timing or In-order vs. Out-of-

Order), M1 platforms consistently deliver lower simulation

time. This applies to different benchmarks simulated on gem5

as illustrated in Fig.1. The simulation speed of M1 platforms

is even higher when co-running multiple gem5 processes. As

depicted, running gem5 on an M1_Ultra is up to 4.15× faster

compared with execution on a high-end Xeon server. We see on

average ∼47% performance improvement on Intel_Xeon
with SMT disabled. That is, the simulation time of running

20 gem5 processes (with SMT disabled) is ∼47% less than

running 40 gem5 processes (SMT enabled). As we will discuss

104

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

in Sec. IV this is expected since gem5 is sensitive to L1 cache

size and disabling SMT will reduce cache contention, thus

improving the overall simulation speed.

Motivated by the huge speedup gains by just running gem5

on a different platform, we set out to profile the execution of

gem5 on both Intel and M1 platforms to shed light on gem5’s

execution bottlenecks. Many of our insights from profiling

gem5 can be applied to other architectural simulators or even

simulators in different fields.

III. METHODOLOGY

In terms of simulation configurations, we change the CPU

type, number of CPUs, and memory size. We use the following

CPU types:

AtomicSimpleCPU (Atomic): CPU type with CPI = 1 where

memory accesses are atomic and completed without modeling

any contention or queuing delays.

TimingSimpleCPU (Timing): CPU type with CPI = 1 where

memory accesses are modeled in detail considering the queuing

delays and resource contentions in the memory and intercon-

nect.

In-order CPU (Minor): In-order or Minor CPU models a fixed

pipeline with strict in-order instruction execution. Minor CPU

uses the detailed timing memory model for accessing memory.

Out-of-order CPU (O3): O3 CPU models an out-of-order

superscalar loosely based on the Alpha 21264 core. O3 CPU

uses the detailed timing memory model for accessing memory.

Simple CPUs are used for fast-forwarding simulation, warm-

ing up caches, or for studies that do not require detailed

CPU modeling. In-order and out-of-order CPU models are

used for detailed microarchitectural studies. Table I shows the

processor configuration for each CPU type. We used Linaro

7.5.0 toolchain for SPLASH-2x and an Ubuntu 18.04 disk

image for PARSEC workloads, respectively. We use Linux

kernel 5.4.0 and ARM ISA for full-system simulations [27].

TABLE I: Base Hardware Configuration on FireSim

Parameters Value
Core Frequency 4GHz

Number of Cores 4 Cores
Superscalar 8-width wide

ROB/IQ/LQ/SQ Entries 192/64/32/32
Int & FP Registers 128 & 192

Branch Predictor/BTB Entries TournamentBP/4096
Cache: L1I/L1D 48KB(I), 32KB(D)

DRAM 2GB, DDR3-1600-8x8
Operating System Linux Linaro (kernel 5.4.0)

We simulate the following workloads on gem5:

• Boot-Exit: Boot Linux in FS mode and immediately exit.

Note that M1_Pro and M1_Ultra cannot take readable
checkpoints so we use them to recover from checkpoints
taken by Intel_Xeon.

• PARSEC: We execute Canneal, Blackscholes,

Dedup, and streamcluster within the mainline

PARSEC 3.0 benchmark and water_nsquared2,

water_spatial, ocean_ncp, ocean_cp, and fmm

2In this paper, Top-Down microarchitectural analysis was carried out using
water nsquared as a representative workload from PARSEC benchmark suite

apps within SPLASH-2x [28] benchmark suite. The bench-

mark input size used for all workloads is simmedium.
• C++ program: Because FireSim is orders of magni-

tude slower than real hardware (a gem5 simulation

that completely executes in 2.34 seconds on a quad-

core Intel_Xeon host results in a slowdown of

∼118× on Firesim), we run a simple algorithm called

Sieve_of_Eratosthenes on the simulated node on

FireSim to evaluate the performance of gem5.

TABLE II: Evaluation platforms

Platform Dell Precision 7920 Apple Macbook Apple MacStudio
Config Name Intel_Xeon M1_Pro M1_Ultra

SoC Xeon Gold 6242R M1 M1 Ultra
micro-architecture Cascade Lake Firestorm(P) + Icestorm(E)

Cores 20C/40T P:4C/4T + E:4C/4T P:16C/16T + E:4C/4T
Max Freq 3.1GHz (4.1GHz TB) 3.2GHz(P), 2GHz(E) 3.2GHz(P), 2GHz(E)

L1
32KB(I) + 32KB(D)

P:192KB(I) + 128KB(D)
(per-core) E:128KB(I) + 64KB(D)

L2 20MB P:12MB + E:4MB P:48MB + E:8MB
L3 35.75MB 8MB 96MB

Cacheline 64B 128B 128B
Memory 96GB, DDR4-2933 8GB, LPDDR4X-4266 64GB, LPDDR5-6400

DRAM BW 141 GB/s 68 GB/s 819.2 GB/s
Single core BW

45 GB/s 58 GB/s 58 GB/s
(unloaded)

DRAM Latency 96ns 97ns 97ns
VM page size 4KB 16KB 16KB

We used the Intel VTune profiler [29] to access the processor

performance counters and perform the Top-Down microarchi-

tectural analysis [30]. To collect performance counters on the

Intel_Xeon CPUs, perf was used [31] . We also profile

Apple M1 CPUs by reading performance counters from the

privileged level [32]. We modify the main simulation loop

function in gem5 to read the performance counters for each

execution.

Experiments are run on three platforms. Table II summarises

the configuration of these three platforms [33]. We refer to

these platforms using their configuration name (Config Name

in Table II) throughout the paper: Intel_Xeon, M1_Pro,
M1_Ultra.

Since gem5 is a single-threaded application, its microarchi-

tectural behavior can be directly compared to single-threaded

CPU benchmarks. For this comparison, we choose a mix of 3

benchmarks from the SPEC 2017 benchmark suite [34]. The

SPEC workloads that we choose are:

• 525.x264_r has been observed to have the highest IPC

of all benchmark in SPEC 2017 suite [35].

• 531.deepsjeng_r has a large memory footprint and

has been observed to have the highest L3 cache miss rate

among other SPEC benchmarks [36].

• 505.mcf_r is chosen due to its high front-end and

back-end stalls resulting from cache misses, and branch

misprediction. 505.mcf_r has the lowest IPC of all

benchmarks in SPEC 2017 suite [35].

Note that we run SPEC benchmarks on bare metal hardware,
not on gem5. We only use SPEC benchmarks as a reference

to compare with gem5’s top-down profile in Sec.IV-A.

Using FireMarshal [37], we run gem5 as a workload on

Firesim [17] for profiling purposes. In our study, we execute

gem5 in system-call emulation mode on a chipyard SoC design

[38]. Our base hardware configuration on Firesim is a quad-core

Rocket chip, which is a RISC-V open-source CPU with a single-

105

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Top-level bottleneck breakdown of gem5 (top) and

SPEC (bottom) running on Intel_Xeon platform. Note that

we include the SPEC workload analysis to provide a reference

for comparison. The SPEC benchmarks are running on native

hardware.

issue, in-order pipeline processor. Our design incorporated

an 8KB 2-way set associative iCache, an 8KB 2-way set

associative dCache, and a 512KB 8-way SiFive set associative

cache, each with a 64-byte block size. We also use a host FPGA

frequency of 140MHz and a DDR3FRFCFSLLC4MB config

fragment to emulate the memory model. We build different

custom hardware designs by varying the cache configs which

we discuss in Sec. V-B.

IV. PROFILING GEM5

In this section, we profile gem5 simulating various configu-

rations and report microarchitectural statistics to demystify the

execution inefficiencies of gem5 as an application. Our goal is

to gain some insights into the execution profile of gem5 to set

the stage for future targeted hardware-level, system-level, and

application-level optimizations that will make gem5 run faster.

A. Top-Down Analysis on Intel Xeon Platform

We use VTune to perform a Top-Down microarchitectural

performance analysis [30] of gem5 when simulating different

workloads with varying configurations. Top-Down analysis

split the machine cycles into four categories: retiring, front-end
bound, bad speculation, and back-end bound. Ideally, we want

every cycle to be categorized as retiring, which is the only

category in which the CPU performs useful work. A cycle is

considered to be front-end bound if the fetch and decode units

(i.e., front-end of the out-of-order processor) cannot supply

sufficient μ-ops for the back-end. The main culprits for front-

end bound cycles are iCache/iTLB misses and inefficiencies in

the instruction decoders. A cycle is considered to be back-end

bound when the processor is stalled because there are not

enough resources in the back-end. This would occur when the

load/store queue is full or the functional units are all busy.

Lastly, a cycle is considered to be bad speculation when a

cycle is lost due to running miss-speculated instructions or

recovering from previous bad speculation.

Fig.2(top) shows the top-level profiling results categorizing

the CPU cycles spent executing gem5 with different CPU

Fig. 3: Front-end latency bound cycles breakdown for gem5

(top) and SPEC (bottom) running on Intel_Xeon.

types. To have a reference for comparison, we also run three

SPEC 2017 benchmarks with diverse characteristics on the

Intel_Xeon platform and show their Top-Down analysis at

the bottom of Fig.2. Refer to Sec.III for more information on

the choice of SPEC benchmarks. As shown, 43.5∼64.7% of

cycles retire instructions across different gem5 simulations.

This is a relatively high retiring percentage compared to

conventional workloads. As shown in the figure, the retiring

cycle percentage for SPEC 2017 benchmarks are between

13.2∼82.2%. However, gem5’s front-end bound cycles are

much higher while the back-end bound cycles are lower

compared with SPEC. 505.mcf_r, which is a memory-

intensive workload. It has 53.7% of back-end bound cycles

while gem5 workloads only spent 0.9%∼11.3% of their cycles

stalling for back-end. This is expected since gem5’s dynamic

working set increases very slowly while simulating different

workloads as gem5 is orders of magnitude slower than real

hardware. Moreover, the simulated memory size is often small

and limited to a few gigabytes, which is not even fully touched

by the simulated workload. The small dynamic working set

size and temporally slow memory access to this working set

results in predictable data cache accesses from gem5 that can be

efficiently captured by the hardware prefetchers or overlapped

in the out-of-order engine of the modern processors.

Hyper-scale workloads such as web-search, web-serving,

and video processing are known to have large instruction cache

footprint and thus are considered to be front-end bound as

their front-end bound cycles are 2∼3× more than those in

typical SPEC benchmarks [39] (in the 15∼30% range across

various workloads). Looking at Fig.2(top), the front-end bound

cycles for gem5 are in the 30.1%∼41.5% range, which is even

higher than that of hyper-scale workloads. Next, we present a

breakdown of performance events impacting front-end bound

stall cycles to find out why such a large number of cycles are

spent waiting for the front-end to supply instructions.

Figure 3 shows the classification of the front-end bound

cycles between front-end bandwidth and latency. The main

reasons for bandwidth- and latency-bound cycles are inef-

ficiencies in instruction decoding and iCache/iTLB misses,

respectively. As shown in Fig.3(top), simpler CPU models are

more skewed toward bandwidth-bound and as the level of CPU

detail increases, the front-end becomes more latency-bound.

106

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Front-end latency bound cycles breakdown for gem5

(top) and SPEC (bottom) running on Intel_Xeon.

This can be explained by the fact that as the complexity of the

CPU model increases, gem5 touches more simulation object

binaries for processing each event. Therefore, the instruction

cache footprint increases with the CPU model complexity, and

consequently, gem5 becomes more front-end latency-bound.

Compared with SPEC, gem5 is more front-end bandwidth-

bound. Next, we zoom into the front-end latency and bandwidth

breakdown to better understand the bottlenecks in the front-end

when executing gem5 on Intel_Xeon.

Figure 4(top) plots the breakdown of front-end latency-

bound cycles. As illustrated in the figure, the O3 and Minor

CPUs have up to 11× higher iCache misses compared with

Atomic CPU simulations. Interestingly, stalled cycles due to

iTLB misses are high across all gem5 executions. On the

other hand, SPEC benchmarks are neither iCache nor iTLB

bound. Along with iCache and iTLB overheads, we see a

huge increase in the branching-related overhead when using

O3 and Minor CPUs. The aggregated branching overhead

for O3 PARSEC and Minor PARSEC (sum of Mispredict

Resteers, Clear Resteers, and Unknown Branches) is 6.0×
and 4.7× higher than that of ATOMIC PARSEC. As shown

in the figure, by using more detailed CPUs, the percentage

of unknown branches significantly increases. The high branch

overhead of detailed gem5 simulation occurs because increasing

the CPU model’s complexity initiates more function calls,

parameter checks, and event generation and activation. These,

in turn, increase the branch density of the code, contribute

to the large branch overhead, and increase the number of

hard-to-predict branches. For SPEC benchmarks, the branching

category contributes to the majority of the front-end latency-

bound cycles. Mispredict Resteers and Unknown Branches

alone contribute to 43.5%∼73.6% of total front-end latency-

bound cycles in SPEC benchmarks.

Figure 5(top) shows the breakdown of bandwidth-bound

cycles. Interestingly, between 92∼97% of the front-end

bandwidth-bound cycles are limited due to waiting for MITE

(Micro-Instruction Translation Engine), and only less than 7%

are bounded by the DSB (know as Decoded iCache or μOp

Cache) μOp supply. μOp cache is a small memory structure

in the decoder unit that holds hot μOp traces. μOp cache

works for codes with lots of instruction reuse and loops, which

Fig. 5: Front-end bandwidth bound cycles breakdown for gem5

(top) and SPEC (bottom) running on Intel_Xeon.

Fig. 6: DSB (μOp Cache) coverage of gem5 (top) and SPEC

(bottom) running on Intel_Xeon.

are both rare in gem5. The irregularity in the gem5’s code

results in a lot of pressure on the instruction decoder to supply

enough instructions to the back-end. Compared to gem5, as

shown in Fig.5(bottom), when running SPEC, more of the

front-end bandwidth-bound cycles are categorized under DSB.

This is because the DSB coverage for regular applications is

often very high. Fig.6 compares the DSB coverage of gem5

and SPEC benchmarks running on Intel_Xeon. As shown,

the DSB coverage of gem5 is much lower than that of SPEC,

regardless of the CPU type or workload. This puts pressure on

the decoder and thus, the MITE stall cycles are high for gem5

simulations.

B. Profiling gem5 on M1

In the previous subsection, we performed a detailed top-down

analysis of gem5 running on a Intel_Xeon platform and

compared its behavior against conventional SPEC benchmarks.

We understand that the front-end of the Intel_Xeon is the

bottleneck in running gem5 simulations. There are many iCache

and iTLB misses, and the instruction decoder of complex x86

instructions cannot feed enough μops to the out-of-order back-

end. We perform the analysis while running gem5 simulations

using three CPU types (Atomic, Timing, and O3), then we

execute water_nsquared on gem5.

Figure 7 compares the average instruction per cycles (IPC)

and CPU stalled cycles of Intel_Xeon, M1_Pro, and

M1_Ultra when running gem5 simulations. IPC of M1_Pro

107

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: IPC (left) and percentage of stalled CPU Cycles (right)

for Intel_Xeon, M1_Pro, M1_Ultra running gem5.

Fig. 8: Performance comparison of TLB, L1 cache, and branch

predictor of Intel_Xeon, M1_Pro, and M1_Ultra.

and M1_Ultra are 2.22× and 2.24× higher than that of

Intel_Xeon, respectively. This margin in IPC values across

both platforms reflects on the simulation time differences

illustrated in Fig.1. Unsurprisingly, the time percentage that

Intel_Xeon is stalled is much higher than that of M1_Pro
and M1_Ultra.

Figure 8 compares the TLB, L1 cache, and branch prediction

performance of Intel_Xeon, M1_Pro, and M1_Ultra
when running gem5 simulations. As shown in the figure, the

iTLB, dTLB, and L1 cache miss rates of M1 platforms are

much lower than that of Intel_Xeon; iTLB and dTLB

miss rates of Intel_Xeon are 11.7× and 10.5× higher

than that of M1_Ultra, respectively. We believe the main

cause of the performance difference between M1 platforms

and Intel_Xeon reported in Fig.1 are the TLB and L1

caches. Looking at Table I, the performance cores in both

M1_Pro and M1_Ultra have 192KB iCache and 128KB

dCache, while Intel_Xeon has 32KB iCache and 32KB

dCache. This is 6× and 4× larger iCache and dCache for M1

platforms, respectively.

Although there is no information on the associativity of the

L1 cache of M1 platforms, we can reverse engineer the number

of ways assuming that the L1 is implemented as a virtually-

indexed, physically tagged (VIPT) cache. In VIPT caches,

the total capacity of a single way cannot exceed the virtual

memory page size in order to overlap the TLB access (address

translation) with indexing into the cache [40]. Since M1 uses

16KB virtual memory page sizes, the iCache and dCache

associativity should be 12 and 8, respectively. The number

of ways for the 32KB icache and dcache of Intel_Xeon
is 8 ways. Therefore, the 10.1×∼13.4× reduction in dCache

miss rate for M1 platforms shown in Fig.8 is mostly due to

the reduction in capacity and compulsory misses (4× higher

capacity, 2× larger cache line size).

We also notice that the branch prediction accuracy of M1

platforms is higher than that of Intel_Xeon. As shown in

Fig. 9: LLC occupancy and memory bandwidth utilization

of gem5 running with different configurations and operating

modes on Intel_Xeon.

Fig.8, the branch misprediction rate of Intel_Xeon is 0.22%

while both M1 platforms have ∼0.14% branch misprediction

rates. In Sec.V-B we run gem5 on FireSim and study the

impact of changing the L1 and L2 cache configurations of the

host (simulation server) on gem5’s performance. What is clear

is that the combination of using larger cache lines (64B vs.

128B), larger virtual memory page size (4KB vs. 16KB), and

larger L1 caches 3 (32KB vs. 128KB) dramatically improves

L1 and TLB performance in M1 platforms. The performant

TLB, L1, and branch predictor results in higher IPC, and in

turn, higher simulation speed for M1_Pro and M1_Ultra
when compared to Intel_Xeon (Fig.7 and Fig.1).

Figure 9(left) shows the LLC occupancy per gem5 process

and Fig.9(right) shows the DRAM bandwidth utilization of

gem5 when running simulations with different CPU models

in Full-System (FS) and System-call Emulation (SE) modes

on Intel_Xeon. Unfortunately, we were not able to find L2,

LLC, or DRAM-related performance counters on M1 platforms.

Therefore, we could not include M1-related information in

Fig.9. As shown in Fig.9 (right), surprisingly, the DRAM

bandwidth utilization of gem5 is negligible regardless of

whether it is running in FS or SE mode. Such low DRAM

bandwidth utilization suggests that gem5’s data set size fits in

the last-level cache (LLC). Fig.9 (left) plots the LLC occupancy

of a single gem5 process running on Intel_Xeon. As shown,

the LLC occupancy increases with the detail level of simulation,

and a gem5 simulation with O3 CPU has the largest instruction

and data footprint compared to simulation with Atomic and

Timing CPUs. The LLC occupancy of a single gem5 process

is between 255KB∼3.1MB.

V. SENSITIVITY ANALYSIS OF SIMULATION SPEED

In this section, we leverage our insights from Sec. IV to

perform a sensitivity analysis for the simulation speed of

gem5. We divide the analysis into systems and architecture
sensitivity. Under the systems analysis, we study the sensitivity

of simulation speed to several systems and compiler parameters

that do not require changes to the server hardware or gem5

application. Under architecture analysis, we study the sensitivity

of simulation speed to the size and associativity of the L1

and L2 caches of the simulation server. Since such analysis

requires changes to the hardware, we run gem5 on FireSim

and configure FireSim to simulate a host server with various

cache configurations. We run unmodified gem5 on FireSim.

3The larger virtual memory page size enables the implementation of low-
associativity, large VIPT L1 caches in M1 platforms as explained earlier.

108

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Performance gain from enabling huge pages for gem5

simulations running on Intel_Xeon.

A. Sensitivity to System Configurations

As discussed in detail in Sec.IV-A, due to the large instruc-

tion footprint of gem5, we observe many stalled cycles due

to iTLB misses while running gem5 simulations. A simple

solution to the iTLB misses is to use huge pages to back

gem5 code/text. We explored two ways to back gem5 code/text

regions with huge pages: Transparent Huge Pages (THP) and

Explicit Huge Pages (EHP). Linux supports Transparent Huge

Pages (THP) [41] which is a kernel feature that provides

dynamic huge page allocations at application runtime. The

current Linux THP implementation only works with anonymous

memory mappings (i.e., the memory that is not backed by the

file system such as implicit memory allocations on the heap and

stack) and tmpfs/shmem. We utilize an open-source library by

Intel [42] to back gem5’s code segment with transparent/explicit

huge pages. By invoking a few API calls at the beginning of

gem5 runtime, the library automatically remaps a subset of

gem5’s code to 2MB huge pages [43]. We also explored the

use of libhugetlbfs library package [44], which requires that

gem5 be recompiled so the binary is aligned at huge page

boundaries. libhugetlbfs automatically backs the code, data,

heap, and shared memory segments with explicitly allocated

huge pages when invoked with requisite parameters. However,

our experiments show an abysmal improvement in simulation

time compared with Intel iodlr. We suggest this is a result of

a sub-optimal gem5 binary layout.

As shown in Fig.10, using huge pages to back the code of

gem5 improves simulation speed by up to 5.9%. The benefits

from using huge pages are low for simple CPU models (i.e.,

Atomic and Timing CPUs), while the benefits for more detailed

CPU models are higher. This is expected because the code

footprint of simple CPUs is smaller than that of detailed CPU

models. This is in line with our discussion in Sec.IV-A and

Fig.3 which illustrates that the simulation of simpler CPUs is

less front-end latency bound compared to detailed CPUs.

We do not see any specific pattern in the performance of

EHP and THP. For some configurations, EHP performs better

than THP. Fig.11 shows the improvement in iTLB overhead

and retiring cycles when backing gem5’s code with THP. As

shown in Fig.11(top), using THP significantly reduces the

iTLB overhead for Minor and O3 simulations. On average,

THP reduces the iTLB overhead by 63%. The improvement in

iTLB overhead results in 3∼7% improvement in the number

Fig. 11: Improvement in iTLB overhead and retiring cycles

when backing gem5 code with transparent huge pages.

Fig. 12: Improvement in gem5 simulation speed when apply-

ing compiler optimizations on Intel_Xeon, M1_Pro, and
M1_Ultra platforms.

of retiring clock cycles in the CPU pipeline for Minor and O3

CPU simulations (Fig.11(bottom)).

Next, we study the impact of compiling gem5 using the

“-O3” flag passed to the GNU G++ compiler. We modified the

scons script to compile gem5 with a higher level of compiler

optimization (i.e, “-O3” flag). Though we used gem5.opt,
we still notice a reduction in the size of the resulting binary

and in the simulation time. Fig.12 compares the simulation

speed up when using a gem5 binary that is compiled with

“-O3” flag compared with baseline gem5 compiled without

the optimization flag. On average, this simple change in the

build process results in 1.38%, 0.98%, and 0.78% speedup for

Intel_Xeon, M1_Pro, and M1_Ultra platforms. “-O3”

flag only performs static compile time optimizations and thus

there is a possibility for hurting the application speed after

applying the optimizations. We see a few instances of such

cases in Fig.12.

Lastly, we study the impact of CPU frequency on gem5

speed. Fig.13 shows how simulation time changes when running

gem5 on Intel_Xeon operating at various frequencies. The

simulation times in Fig.13 are normalized to the run with

3.1GHz frequency. As expected, reducing CPU frequency from

3.1GHz to 1.2GHz increases the simulation time by 2.67×.
This shows a linear increase in simulation time with a reduction

in CPU frequency.

109

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 13: Normalized gem5 simulation time when changing

CPU frequency and enabling Turbo Boost on Intel_Xeon
platform. The simulation times are normalized to the baseline

CPU running at 3100MHz without TurboBoost.

B. Sensitivity to Architectural Configurations

In this subsection, we run gem5 on FireSim and change the

L1 and L2 configurations of the O3 core in FireSim to study

gem5’s sensitivity to the cache configuration of the simulation

server. As mentioned earlier, since FireSim is much slower

than real hardware, we run a simple C++ application on gem5

and do not run PARSEC.

Figure 14 compares the simulation time of gem5 running

on a server with various L1 and L2 configurations. The cache

line size and virtual memory page size in the simulated node

in FireSim are 64B and 4KB, respectively. Since the L1 cache

is a VIPT cache, to increase the L1 size we only increase the

associativity and keep the number of sets fixed at 64 to overlap

TLB access and L1 cache indexing. We use the following

format to represent different L1 and L2 configurations in

Fig.14: (iCache size/iCache associativity : dCache size/dCache

associativity : L2 size/L2 associativity).

As illustrated in Fig.14, increasing the size of both iCache

and dCache are critical in improving the simulation speed. The

simulation times are normalized to a baseline configuration

with 8KB 2-way set associative iCache/dCache and a 512KB

8-way set associative L2 cache. Increasing iCache and dCache

size from 8KB to 16KB reduces Atomic, Timing, and O3

simulation time by 30%, 25%, and 18%. On the other hand,

doubling L2 cache size from 1MB to 2MB has almost no impact

on the simulation time. The best-performing configuration

is the last configuration where we keep L2 the same size

as the baseline and configure both iCache and dCache as

64KB 16-way set-associative caches (64KB/16 : 64KB/16

: 512KB/8). This configuration improves simulation speed

by 68.7%, 68.2%, and 43.8% for Atomic, Timing, and O3

simulations, respectively. We notice that gem5 simulations

with O3 CPU benefit less than simpler CPU models from

increasing L1 cache size. We suspect that the TLB bottleneck

in detailed simulations limits the benefits of the larger L1 size.

VI. DISCUSSION OF FUTURE WORK

Our detailed microarchitectural analysis revealed the bottle-

necks in gem5 execution. The fact that changing the physical

Fig. 14: Simulation speedup when running gem5 on FireSim

with varying cache configurations.

Fig. 15: Top 50 hottest functions in gem5 when simulating a

PARSEC workload with different CPU types.

platform can result in significant simulation speedup motivates

us to think about developing specialized computing platforms

for running architectural simulations. One potential area to

explore is to offload simulation entirely or partially to a

hardware accelerator.

For an application to be qualified for hardware acceleration,

the application needs to be (1) widely used and (2) stable

with no structural changes over time. gem5 satisfies the first

requirement as it is a popular application with a growing

user base in both academia and industry. Although gem5 is

constantly changing, its core, which is the event queue and event

scheduler has been the same for many years, and will probably

remain the same in the future. Therefore, gem5 satisfies the

second requirement as well.

Figure 15 shows the cumulative distribution function (CDF)

of the CPU time of the 50 hottest functions executed in gem5

simulating different CPU types. As shown, there is no killer
function inside the gem5 source code whose optimization would
significantly improve the simulation time. The hottest function

in Atomic, Timing, Minor, and O3 CPU types contribute to

10.1%, 8.5%, 2.9%, and 4.2% of the total simulation time,

respectively. As we increase the complexity of the CPU, the

CDF of individual function execution time gets flatter; meaning

that the hotness of individual functions gets lower. This is

not surprising since increased simulation complexity causes

more simulation objects to get activated in each event to more

accurately model the complexity of the hardware. Therefore,

more diverse functions get called when simulating with O3 CPU

type compared with simpler CPU models. The total number

110

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

of functions called throughout the simulation for the results

shown in Fig.15 are 1602, 2557, 3957, and 5209 for Atomic,

Timing, Minor, and O3 CPU types, respectively.

Since there is no killer function, accelerating even several

gem5 functions in hardware would not provide a significant

performance improvement. Therefore, the results of Fig.15

suggest that building an off-chip hardware accelerator for

gem5 is probably not an option. Instead, hardware acceleration

should be at a finer granularity and tightly coupled with the

CPU. The comparison of Intel_Xeon and M1 platforms

revealed that even a general-purpose CPU with some fine-

tuning of architectural and system parameters can significantly

improve gem5 performance. Detailed basic-block analysis of

gem5 source code is required to identify commonly used

operations and data structures to map them to specialized,

complex instructions. The open-source RISC-V ISA facilitates

the development of such a specialized CPU. Designing such

a specialized CPU for accelerating event-driven simulation is

an interesting future research direction. However, a short-term

solution is to utilize the configurability of current servers at

the system- and compiler-level optimizations to improve the

simulation execution.

VII. RELATED WORK

Acceleration of Simulation FireSim [17] is an FPGA Ar-

chitecture Model Execution (FAME) simulator [45]. FireSim

uses FPGAs to implement the complete RTL of a target

system to model the timing of future hardware. The timing

model can be decoupled from the real design such that

multiple host FPGA clock cycles are used to model one

target clock cycle when modeling complex logic. Although

FAME simulators significantly speed up the simulation speed,

developing new models on them is time-consuming, error-

prone, and inflexible. Therefore FAME cannot replace software-

base simulation. Parallel Discrete Event Simulation (PDES)

technique is used to simulate different components in parallel

and conservatively or optimistically synchronize them in fixed

intervals called quantum [46], [9], [47]. Using conservative

PDES for parallelizing the simulation of on-chip resources has

diminishing returns as the overhead of frequent synchronization

offsets the benefits of parallel execution. Therefore, PDES

simulators such as SST [47] only operate at larger component

levels since the speed of modeling individual components will

become a bottleneck in the overall simulation.

Sampling techniques and using hardware virtualization

support for fast-forwarding simulations are widely used for

improving the speed and accuracy of architectural simula-

tion [10], [11], [12], [13], [14]. Such techniques are orthogonal

to improving the speed of detailed simulation.

Top-Down Microarchitectural Analysis. There is a large

body of work on profiling applications and performing Top-

Down microarchitectural analyses on various applications such

as data analytics and cloud applications [48], [49], hyper-

scale services [39], SPEC benchmark [30], [35], [50], web

search [51], network stack [52], data-intensive applications [53],

[54], [55], video transcoding [56], graph applications [57],

network fuctions [58], and many more application domains.

However, no previous work has performed a detailed Top-

Down microarchitectural analysis to profile the execution of a

software-based architectural simulator.

VIII. CONCLUSION

There has been no work characterizing the execution

bottlenecks in gem5 even though it is considered one of

the most versatile and slowest architectural simulators and

has a huge active user community. In this work, we profiled

the performance characteristics of gem5 and demystified the

inefficiencies of gem5 simulations. Our detailed Top-Down

microarchitectural analysis reveals three main bottlenecks

in gem5 execution: (1) high iCache and iTLB misses, (2)

high branch resteer overheads, and (3) extremely low μOp

cache utilization when running on an Intel Xeon CPU. These

bottlenecks are the result of huge code size, cold code

execution, extensive use of virtual functions, and polymorphism

throughout the gem5 source code. We observe that running

gem5 on an Apple M1 MacBook reduces simulation time by up

to 3×times compared to a high-end Xeon server. Our profiling

results reveal that the larger L1 cache size along with the use

of a larger virtual memory page size leads to such performance

improvement for gem5. This work is the first step towards

better understanding the characteristics of detailed, software-

based architectural simulation and developing optimized server

solutions for accelerating the simulation of future computer

systems.

ACKNOWLEDGEMENT

This work was supported in part by grants from National

Science Foundation (CNS-2213807) and ACE, one of the seven

centers in JUMP 2.0, a Semiconductor Research Corporation

(SRC) program sponsored by DARPA.

REFERENCES

[1] “John hennessy and david patterson 2017 acm a.m. turing award lecture,”
https://www.youtube.com/watch?v=3LVeEjsn8Ts, 2017.

[2] A. Akram and L. Sawalha, “A survey of computer architecture simulation
techniques and tools,” IEEE Access, vol. 7, 2019.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, 2011.

[4] W. Heirman, T. Carlson, and L. Eeckhout, “Sniper: Scalable and accurate
parallel multi-core simulation,” in 8th International Summer School on
Advanced Computer Architecture and Compilation for High-Performance
and Embedded Systems (ACACES-2012). High-Performance and
Embedded Architecture and Compilation Network of . . . , 2012.

[5] A. Patel, F. Afram, and K. Ghose, “Marss-x86: A qemu-based micro-
architectural and systems simulator for x86 multicore processors,” in 1st
International Qemu Users’ Forum, 2011.

[6] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” ACM SIGARCH Computer
architecture news, vol. 41, 2013.

[7] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, 2014.

[8] SST, “Sst simulation,” ://sst-simulator.org/.
[9] A. Mohammad, U. Darbaz, G. Dozsa, S. Diestelhorst, D. Kim, and

N. S. Kim, “dist-gem5: Distributed simulation of computer clusters,” in
Performance Analysis of Systems and Software (ISPASS), 2017 IEEE
International Symposium on. IEEE, 2017.

[10] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras, and
D. Black-Schaffer, “Full speed ahead: Detailed architectural simulation at
near-native speed,” in 2015 IEEE International Symposium on Workload
Characterization, 2015.

111

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

[11] G. Borgström, A. Sembrant, and D. Black-Schaffer, “Adaptive
cache warming for faster simulations,” in Proceedings of the
9th Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools, ser. RAPIDO ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3023973.3023974

[12] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proceedings of the 30th annual international symposium on
Computer architecture, 2003.

[13] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, 2003.

[14] N. Nikoleris, L. Eeckhout, E. Hagersten, and T. E. Carlson, “Directed
statistical warming through time traveling,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’52. New York, NY, USA: Association for Computing
Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3352460.
3358264

[15] J. Chen, M. Annavaram, and M. Dubois, “Slacksim: A platform for
parallel simulations of cmps on cmps,” SIGARCH Comput. Archit. News,
vol. 37, jul 2009. [Online]. Available: https://doi.org/10.1145/1577129.
1577134

[16] M. Alian, D. Kim, and N. S. Kim, “pd-gem5: Simulation infrastructure
for parallel/distributed computer systems,” IEEE Computer Architecture
Letters, vol. 15, 2016.

[17] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs,
B. Nikolic, R. Katz, J. Bachrach, and K. Asanovic, “Firesim: Fpga-
accelerated cycle-exact scale-out system simulation in the public cloud,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018.

[18] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, “Hasim: Fpga-
based high-detail multicore simulation using time-division multiplexing,”
in 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, 2011.

[19] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis, J. C. Hoe,
D. Chiou, and K. Asanovic, “Ramp: Research accelerator for multiple
processors,” IEEE Micro, vol. 27, 2007.

[20] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. An-
dreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj et al.,
“The gem5 simulator: Version 20.0+,” arXiv preprint arXiv:2007.03152,
2020.

[21] J. C. Hoe, D. Burger, J. Emer, D. Chiou, R. Sendag, and J. Yi, “The
future of architectural simulation,” IEEE Micro, vol. 30, 2010.

[22] A. Robertson and R. Ibbett, “Hase: a flexible high performance
architecture simulator,” in 1994 Proceedings of the Twenty-Seventh
Hawaii International Conference on System Sciences, vol. 1, 1994.

[23] Y. Jung, Y. Chiba, D. Kim, and Y. Kim, “simcore: an event-driven
simulation framework for performance evaluation of computer systems,”
in Proceedings 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (Cat.
No.PR00728), 2000.

[24] C. Collange, M. Daumas, D. Defour, and D. Parello, “Barra: A
parallel functional simulator for gpgpu,” in 2010 IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2010.

[25] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, 2002.

[26] T. Austin, E. Larson, and D. Ernst, “Simplescalar: an infrastructure for
computer system modeling,” Computer, vol. 35, 2002.

[27] “The arm research starter kit: System modelling using gem5,” https:
//github.com/arm-university/arm-gem5-rsk, Accessed Feb. 2023.

[28] X. Zhan, Y. Bao, C. Bienia, and K. Li, “Parsec3.0: A multicore
benchmark suite with network stacks and splash-2x,” SIGARCH
Comput. Archit. News, vol. 44, feb 2017. [Online]. Available:
https://doi.org/10.1145/3053277.3053279

[29] “Intel® vtune™ profiler,” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html#gs.jescps, 2021.

[30] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014.

[31] T. Gleixner and I. Molnar, “perf,” https://github.com/torvalds/linux, 2008.

[32] “Reading m1 performance counters,” https://gist.github.com/ibireme,
commit = 173517c208c7dc333ba962c1f0d67d12, Accessed Nov. 2022.

[33] “Apple mac m1 microarchitectural features,” https://https://everymac.
com/, Accessed Dec. 2022.

[34] SPEC, “Spec 2017 documentation,” https://www.spec.org/cpu2017/Docs,
year = 2017,.

[35] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a decade: Did spec
cpu 2017 broaden the performance horizon?” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018.

[36] A. Limaye and T. Adegbija, “A workload characterization of the spec
cpu2017 benchmark suite,” in 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2018.

[37] N. Pemberton and A. Amid, “Firemarshal: Making hw/sw co-design
reproducible and reliable,” in 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2021.

[38] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt, J. Wright,
J. Zhao, Y. S. Shao, K. Asanović, and B. Nikolić, “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, vol. 40, 2020.

[39] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, ser. ISCA ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2749469.2750392

[40] W. H. Wang, J.-L. Baer, and H. M. Levy, “Organization and
performance of a two-level virtual-real cache hierarchy,” SIGARCH
Comput. Archit. News, vol. 17, apr 1989. [Online]. Available:
https://doi.org/10.1145/74926.74942

[41] A. Arcangeli, “Transparent hugepage support,” in KVM forum, vol. 9,
2010.

[42] “Intel optimizations for dynamic language runtimes,” https://github.com/
intel/iodlr, Accessed Oct. 2022.

[43] “Runtime performance optimization blueprint: Intel architecture
optimization with large code pages,” https://www.intel.com/content/www/
us/en/developer/articles/technical/runtime-performance-optimization-
blueprint-intel-architecture-optimization-with-large-code.html, Accessed
Dec. 2022.

[44] “libhugetlbfs,” https://github.com/libhugetlbfs/libhugetlbfs, Accessed Dec.
2022.

[45] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanović, and D. Patterson,
“A case for fame: Fpga architecture model execution,” in Proceedings of
the 37th Annual International Symposium on Computer Architecture, ser.
ISCA ’10. New York, NY, USA: Association for Computing Machinery,
2010. [Online]. Available: https://doi.org/10.1145/1815961.1815999

[46] J. Chen, L. K. Dabbiru, D. Wong, M. Annavaram, and M. Dubois,
“Adaptive and speculative slack simulations of cmps on cmps,” in 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture,
2010.

[47] A. F. Rodrigues, G. R. Voskuilen, S. D. Hammond, and K. S. Hemmert,
“Structural simulation toolkit (sst).” Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), Tech. Rep., 2016.

[48] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, “Performance
characterization of in-memory data analytics on a modern cloud server,”
in 2015 IEEE Fifth International Conference on Big Data and Cloud
Computing, 2015.

[49] A. Yasin, Y. Ben-Asher, and A. Mendelson, “Deep-dive analysis of
the data analytics workload in cloudsuite,” in 2014 IEEE International
Symposium on Workload Characterization (IISWC), 2014.

[50] J. Haj-Yihia, A. Yasin, Y. B. Asher, and A. Mendelson, “Fine-grain
power breakdown of modern out-of-order cores and its implications on
skylake-based systems,” ACM Trans. Archit. Code Optim., vol. 13, dec
2016. [Online]. Available: https://doi.org/10.1145/3018112

[51] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
hierarchy for web search,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2018.

[52] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy, and
T. Anderson, “Tas: Tcp acceleration as an os service,” in Proceedings
of the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3302424.3303985

[53] W. Gao, J. Zhan, L. Wang, C. Luo, D. Zheng, F. Tang, B. Xie,
C. Zheng, X. Wen, X. He, H. Ye, and R. Ren, “Data motifs: A lens
towards fully understanding big data and ai workloads,” in Proceedings
of the 27th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3243176.3243190

112

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

[54] Z. Jia, J. Zhan, L. Wang, C. Luo, W. Gao, Y. Jin, R. Han, and L. Zhang,
“Understanding big data analytics workloads on modern processors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, 2017.

[55] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, “How data
volume affects spark based data analytics on a scale-up server,” in BPOE.
Springer, 2015.

[56] A. Lottarini, A. Ramirez, J. Coburn, M. A. Kim, P. Ranganathan,
D. Stodolsky, and M. Wachsler, Vbench: Benchmarking Video
Transcoding in the Cloud. New York, NY, USA: Association
for Computing Machinery, 2018, p. 797–809. [Online]. Available:
https://doi.org/10.1145/3173162.3173207

[57] A. Addisie, H. Kassa, O. Matthews, and V. Bertacco, “Heterogeneous
memory subsystem for natural graph analytics,” in 2018 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), 2018.

[58] J. Takemasa, Y. Koizumi, and T. Hasegawa, “Toward an ideal ndn
router on a commercial off-the-shelf computer,” in Proceedings of the
4th ACM Conference on Information-Centric Networking, ser. ICN ’17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3125719.3125731

113

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on September 06,2023 at 21:37:08 UTC from IEEE Xplore. Restrictions apply.

