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Abstract—Modern commercial-off-the-shelf (COTS) multicore
processors have advanced memory hierarchies that enhance
memory-level parallelism (MLP), which is crucial for high
performance. To support high MLP, shared last-level caches
(LLCs) are divided into multiple banks, allowing parallel access.
However, uneven distribution of cache requests from the cores,
especially when requests from multiple cores are concentrated
on a single bank, can result in significant contention affecting all
cores that access the cache. Such cache bank contention can even
be maliciously induced—known as cache bank-aware denial-of-
service (DoS) attacks—in order to jeopardize the system’s timing
predictability.

In this paper, we propose a per-bank bandwidth regulation
approach for multi-banked shared LLC based multicore real-
time systems. By regulating bandwidth on a per-bank basis,
the approach aims to prevent unnecessary throttling of cache
accesses to non-contended banks, thus improving overall perfor-
mance (throughput) without compromising isolation benefits of
throttling. We implement our approach on a RISC-V system-on-
chip (SoC) platform using FireSim and evaluate extensively using
both synthetic and real-world workloads. Our evaluation results
show that the proposed per-bank regulation approach effectively
protects real-time tasks from co-running cache bank-aware DoS
attacks, and offers up to a 3.66× performance improvement for
the throttled benign best-effort tasks compared to prior bank-
oblivious bandwidth throttling approaches.

I. INTRODUCTION

Modern commercial-off-the-shelf (COTS) multicore proces-
sors are equipped with sophisticated memory hierarchies that
support a high degree of memory-level parallelism (MLP).
Because memory accesses often take significantly longer than
actual computation, enabling high MLP across all levels of the
memory hierarchy is crucial for achieving high performance
in modern multicore architectures.

To facilitate high MLP, shared last-level caches (LLCs) are
often organized into multiple banks that can be independently
accessed in parallel. For instance, the LLC of the ARM
Cortex-A72 processor has two independent tag banks, each
of which is further divided into four data banks [1]. Such a
multi-bank cache design maximizes parallelism and through-
put in accessing the cache, and is widely adopted in high-
performance multicore architectures [1]–[5], including those
that are used in safety-critical embedded real-time systems in
automotive and aviation domains [6], [7].

*This work was conducted while affiliated with the University of Kansas.

While most prior work on shared cache for real-time
systems has focused on cache space partitioning, multiple
studies have shown that partitioning cache space alone does
not guarantee temporal isolation in accessing the cache [8]–
[12]. In particular, it has been shown that the performance of
a multi-bank cache can degrade significantly when requests
to the cache are unevenly distributed across the banks. In
the worst-case scenario, when all requests are concentrated
on a single cache bank, severe contention can arise. Such
bank conflicts can disrupt the system’s temporal predictability
and be leveraged as cache bank-aware denial-of-service (DoS)
attacks [12].

To mitigate shared cache bank contention, the prior
study [12] suggested a software-based cache bandwidth throt-
tling approach as a potential solution, which is based on
MemGuard [13] and uses hardware performance counters to
monitor and regulate the LLC access bandwidth of the offend-
ing cores (those that generate excessive parallel requests to the
LLC). However, such a software-based bandwidth throttling
solution severely impacts the performance of the throttled
cores. To provide sufficient isolation for the protected real-
time task, it reportedly incurs up to 300× slowdown of the
throttled tasks [12], which may be unacceptable overhead for
many applications. While hardware-based memory bandwidth
throttling solutions [14]–[16], if used for LLC bandwidth throt-
tling, can potentially reduce the overhead of software-based
throttling, their effectiveness is still fundamentally limited
because they are not aware of cache banks when regulating
bandwidth, which makes them overly pessimistic.

In this paper, we propose per-bank bandwidth regulation of
shared LLCs for predictable and efficient use of the shared
cache in multicore SoCs for real-time systems. Our approach
is motivated by the observation that the worst-case bank
contention arises when cache accesses are concentrated on a
single cache bank rather than distributed across the banks.
As such, instead of throttling bandwidth to the entire shared
LLC, we apply bandwidth throttling on a per cache-bank basis
to only throttle accesses when there is a bank conflict. This
effectively multiplies the permissible cache access bandwidth
of best-effort tasks without compromising the isolation benefits
of bandwidth throttling to the protected real-time tasks.

We implement the proposed per-bank throttling capability as
an extension to an open-source hardware memory bandwidth
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regulator [16] on a RISC-V system-on-chip (SoC) platform us-
ing Xilinx UltraScale+ VCU118 FPGA [17] and FireSim [18].
We evaluate the effectiveness of the proposed approach in
providing temporal isolation to the real-time victim tasks
in the presence of cache bank-aware DoS attacks. We then
demonstrate the efficiency benefits of per-bank regulation
over prior approaches that throttle the aggregate bandwidth
of all banks globally. We show that per-bank regulation can
effectively protect victim tasks from the attack while providing
best-effort tasks with up to a 3.66× performance improvement
over the prior bank-oblivious regulation scheme.

In summary, we make the following contributions:
• We propose per-bank bandwidth regulation on shared

LLC to effectively and efficiently defend against potential
cache bank contention attacks (regardless of whether
malicious or benign).

• We present a prototype hardware design, which can
be integrated into any RISC-V SoC that supports the
standard TileLink interconnect, and analyze its ability to
prevent cache bank-aware DoS attacks.

• We implement our design on a realistic cycle-exact,
FPGA-accelerated full-system simulator, and evaluate its
performance improvements over prior bank-oblivious reg-
ulation approaches. We also provide our design as open-
source*.

The remainder of the paper is organized as follows. Sec-
tion II provides the necessary background. Section III defines
the threat model. Section IV motivates the need for per-
bank regulation. We present our proposed per-bank regulation
design in Section V and the evaluation results in Section VI.
We discuss related work in Section VII and conclude in
Section VIII.

II. BACKGROUND

In this section we provide the necessary background on
multi-banked caches, cache bank-aware DoS attacks, and
bandwidth regulation methods.

A. Multi-Bank Cache Organization

The shared cache of a modern multicore processor is often
composed of multiple independent banks (sometimes referred
to as slices [19]), which can be accessed in parallel. This multi-
bank cache organization facilitates high MLP, which is crucial
for high-performance multicore processors. In a multi-bank
cache, a mapping function determines the bank from a given
physical address. The mapping function can be as simple as
using a subset of the memory address bits.

Figure 1 depicts the multi-bank LLC organization of the
ARM Cortex-A72 [1]. Note that it is comprised of two inde-
pendent tag banks, each of which is further divided into four
sub-banks called data banks. The tag banks are completely
independent, allowing for two separate LLC accesses to be
serviced in parallel. Likewise, the data banks allow for further
interleaving of accesses. To index the tag and data banks,

*https://github.com/CSL-KU/per-bank-regulation-firesim
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Fig. 1: ARM Cortex-A72 LLC Organization [1].

physical address bits 4, 5 and 6 are used. Bit 6 indexes between
the two tag banks, with bits 4 and 5 being used to index the
data banks within each tag bank. For 64 byte cache lines, each
line is split into four sub-lines of 16 bytes that are striped
across the data banks.

It is important to note that these bits (4, 5 and 6) are in the
lower 12 bits of an address, within the page offset. This means
that these bits can be fully controlled from the user space
without the need for elevated privileges or huge pages. With
this understanding, an attacker can direct memory accesses to
specific banks, opening the door for potential DoS attacks [12].

B. Cache Bank-Aware DoS Attack

The feasibility of cache bank-aware DoS attacks was first
demonstrated in a recent study [12] on both ARM Cortex-
A57 [2] and Cortex-A72 [1] cores. Under the threat model
described in Section III, the study shows that by saturating
a single cache bank of the shared L2 cache with many
parallel requests, an attacker can cause up to a 10× cross-core
slowdown on a victim task. This slowdown occurs even when
the victim is running on a dedicated core in isolation, accessing
a dedicated L2 cache (space) partition by means of page
coloring. As the cache space is partitioned between the victim
and the attacker, it demonstrates that the slowdown is not
caused by cache evictions. Furthermore, it also shows that the
contention occurs at the bank level—not at the bus level—as
no slowdown is observed when the victim and attacker target
separate cache banks. Lastly, the worst-case slowdown occurs
when both the victim and the attacker access the same cache
bank, suggesting that the cache bank bandwidth becomes the
bottleneck in such a situation.

C. Cache Bandwidth Regulation

To mitigate cache bank-aware DoS attacks, the prior
study [12] proposed a software-based cache bandwidth reg-
ulation method, LLCGuard, which uses per-core performance
counters to regulate (limit) each core’s LLC access bandwidth
(as opposed to DRAM bandwidth regulation proposed by
MemGuard [13]) at a regular time interval (e.g., 1ms). How-
ever, the software-based approach is known to incur very high
performance cost to the throttled best-effort cores. Concretely,
the study reports up-to 300× slowdown of the tasks on the
throttled cores to ensure no more than 1.1× slowdown of the
protected real-time tasks on the unregulated core. As discussed
in [12], part of the reason for such a massive performance
loss is due to software implementation overhead. With the
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regulation period of 1ms, a large amount of LLC accesses
can still occur in short bursts, which results in LLC bank
contention.

In contrast, a hardware-based cache bandwidth solution can
operate at a much finer granularity (in cycles), which can
help spread the LLC accesses more evenly across the entire
throttle period, thereby reducing the negative performance
impact of throttling best-effort cores. While existing hardware-
based bandwidth regulators, such as Intel RDT [14] and
ARM MPAM [15], are mainly designed to regulate memory
bandwidth, they can potentially be modified to regulate cache
bandwidth to mitigate cache bank contention.

Unfortunately, all aforementioned regulation schemes, both
software and hardware, suffer from a common limitation—
they do not regulate at the bank level, where the actual con-
tention occurs. Instead, they treat the entire cache (or DRAM)
as a single resource and regulate its total access bandwidth.
We henceforth refer to the latter as all-bank regulation. In
the following, we show why this all-bank regulation is overly
pessimistic.

III. THREAT MODEL OF CACHE BANK DOS ATTACKS

In this work, we consider the same threat model used
in [12]. That is, we assume: (1) a victim task and one or
more attacker tasks are co-located on a multicore platform,
which has a shared last-level cache (LLC) and main memory
(DRAM); (2) the victim and the attackers are partitioned to
run on dedicated CPU cores and LLC cache spaces; (3) the
attackers have non-privileged access on the target platforms
and can only execute code from the userspace; (4) the cache
bank address mapping information is known beforehand either
from datasheets [1], [2] or reverse engineering [20], [21].
Following these conditions, our goal is to guarantee temporal
isolation of the victim accessing the shared cache in the
presence of co-scheduled attackers, while maximizing cache
bandwidth throughput available to the attackers.

IV. MOTIVATION

In this section, we first evaluate the effect of cache bank-
aware DoS attacks, synthetic workloads that generate severe
cache bank contention [12], on two embedded multicore plat-
forms (Section IV-A). We then discuss the limitations of bank-
oblivious “all-bank” cache bandwidth regulation approaches in
mitigating such attacks (Section IV-B).

A. Effects of Cache Bank-Aware DoS Attacks

In this experiment, we use two contemporary embedded
multicore platforms: Raspberry Pi 4 Model B [22] and Bea-
gleV Ahead [5]. The Raspberry Pi 4 is based on the Broadcom
BCM2711 SoC and is equipped with four ARM Cortex-
A72 [1] cores with a 1MB shared L2 cache. Comparably, the
BeagleV Ahead is based on the Alibaba T-Head TH1520 SoC,
equipped with four Xuantie C910 RISC-V cores with a 1MB
shared L2 cache. Table I shows the basic characteristics of the
two platforms.

Platform Raspberry Pi 4 (B) Beagle V Ahead
SoC BCM2711 TH1520

Architecture ARMv8-A RISC-V 64GC

CPU

4x Cortex-A72 4x Xuantie C910
out-of-order out-of-order

1.5GHz 2.0GHz
48KB(I)/32KB(D) 64KB(I)/64KB(D)

Shared L2 Cache 1MB 1MB
Memory 4GB LPDDR4 4GB LPDDR4

TABLE I: COTS embedded multicore platforms.

For software, the Pi 4 runs Raspberry Pi OS with Linux
kernel 6.6, and the Beagle V runs Ubuntu 20.20 with Linux
kernel 5.10. In both platforms, the kernels are patched with
PALLOC [23], a page coloring mechanism for Linux, to
partition the L2 cache space equally between the victim and
the attackers.

For evaluation, we use the BkPLL workload from [12].
As both the victim and the attackers, BkPLL is a pointer
chasing workload that can generate a configurable number of
parallel memory requests targeting a specific cache bank. We
first run the victim on one core in isolation and measure its
performance. We then repeat the experiment in the presence
of co-running attacker tasks on the other cores. We evaluate
different combinations of target cache banks for the victim and
the attackers: Same Bank refers to the case where the victim
and the attacker target the same cache bank, whereas Diff Bank
refers to the case where they target different banks.
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Fig. 2: Effects of cache bank-aware DoS attacks

Figure 2 shows the normalized slowdowns of the victim
on different cache bank mapping configurations. The dashed
horizontal line denotes the baseline 1.00× slowdown (in this
case, solo performance). First we notice that, consistent with
the findings in [12], contention occurs at the cache bank level,
not on the shared bus level. The victim sees no slowdown
when the attackers target a different bank, whereas severe
slowdown is observed when both target the same cache bank.
Second, we observe up to 8.7× slowdown on the Pi 4 platform,
which is considerably worse than the 8.3× reported worst-
case slowdown on the same platform [12]. Interestingly, we
find different target data bank selections for the victim and
the attackers contribute to the increased worst-case slowdown.
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Third, the BeagleV platform shows similar trends but its
worst-case slowdown is considerably less (3.5×) than that of
the Pi 4 (8.7×). This is due to the differences in baseline
performance—i.e., the CPU core’s ability to concurrently
generate requests and the peak bandwidth of the cache. Note
that Raspberry Pi 4’s peak cache bandwidth is 2× higher than
that of the BeagleV. In general, faster processors tend to suffer
larger worst-case slowdowns.

B. Limitations of “All-Bank” Bandwidth Regulation

The results in the previous subsection show that the
contention created by the DoS attack is not on the shared
bus, but at the targeted cache bank. This indicates that, in
order to mitigate the bank contention attack, we only need to
limit (throttle) the traffic (bandwidth) going into the contended
bank. Furthermore, the banks in the cache are independent of
each other. As such, regulation should be applied on a per-
bank basis rather than applied unnecessarily across all banks.
Unfortunately, existing bandwidth regulation approaches can-
not be applied to individual cache banks.

For example, BRU [16] is a hardware-level bandwidth
regulator inserted between the L1 caches and the shared L2
cache [16]. As such, it regulates the L2 access traffic of the
subset of cores that may be executing the DoS attackers.
However, BRU tracks all L2 access traffic, without consid-
eration for the individual bank destination. In other words, it
implements an “all-bank” bandwidth regulation scheme.

Bank 2Bank 1 Bank 2Bank 1

Access One
Access Two

All-Bank
Per-Bank

Budget Budget Budget

Budget Unit

Fig. 3: All-bank vs. per-bank bandwidth regulation on multi-
bank shared caches

Figure 3 depicts the high-level intuition illustrating why
all-bank regulation is needlessly pessimistic. Consider two
bandwidth regulation systems, one with all-bank regulation
(left) and one with per-bank (right). Both systems have two
cache banks. Suppose that we need to limit the traffic to 5
accesses to a cache bank per regulation period to mitigate the
contention on the bank. In the case of all-bank regulation it is
bank oblivious, thus the global cache access budget must be
set to 5 accesses, to counter the worst-case where all traffic
goes to one cache bank. This budget is deducted on every

cache access, even though in reality, the two cache accesses
are interleaved across two different banks.

Per-bank regulation, in contrast, can apply the access budget
of 5 to each bank separately, only then is a budget deducted
when the specific bank is accessed. As such, when the two
accesses are interleaved over the two banks, each bank’s
budget is depleted by one, leaving a remaining budget of 4
for each bank, whereas only 3 would be left in the all-bank
case. As more accesses are interleaved, per-bank regulation
can provide higher aggregate bandwidth while still providing
worst-case cache bank contention guarantees. With this intu-
ition in mind, we now discuss our proposed per-bank cache
bandwidth regulation system design.

V. PER-BANK CACHE BANDWIDTH REGULATION

In this section, we describe the design and implementation
details of the proposed per-bank cache bandwidth regulation
approach.

A. Design Overview

Our per-bank bandwidth regulation solution is implemented
as an extension to an open-source hardware bandwidth regu-
lator called BRU [16], designed to drop into an SoC design
between the cores/accelerators and the shared cache. Figure 4
depicts a high-level view of our bandwidth regulation unit in
a basic dual-core setup.

Regulation Unit

Core 0 Core 1

Shared
Cache

Fig. 4: High-level view of a regulation unit in a dual-core SoC

BRU supports creation of multiple arbitrary domains, each
of which may be composed of one or more cores. A domain
is the primary entity that bandwidth regulation is applied to.
In the original BRU design, each domain can be configured
with a period (cycles) and a budget (number of memory
requests). The budget is decremented for any memory request
made to the shared cache (regardless of which bank it targets)
and once the budget is depleted, all cores in the domain are
denied access to the shared cache until the period expires and
the budget is replenished. As discussed earlier, we call this
all-bank regulation because it counts an access to any bank
equally.
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Our modifications to BRU enable tracking and regulating
the budget for each shared cache bank rather than for the
entire cache. Specifically, for each request to the cache, we
decode its destination cache bank address and charge it to
the corresponding bank’s budget. This means, for an N bank
shared cache, we have N separate bank budgets to keep track
of. When any one bank’s budget is depleted, further access
to the bank will be prevented(throttled) until the next period
begins. Accesses to other banks can still occur as long as their
budgets are not depleted.

B. Per-bank Bandwidth Regulation Interface

To enable fixed user-defined bandwidth regulation, our
design exposes memory-mapped I/O (MMIO) registers. The
Access Budget Register (ABR) is used to program the maxi-
mum number of accesses per period and the Regulation Period
Register (RPR) sets the regulation period in cycles. Equation 1
represents the bandwidth budget assigned to each bank given
the values of the ABR and RPR registers. Note that each bank
gets the budget BW, rather than it being evenly distributed
among the banks. TS represents the transaction size and f
the clock frequency. When a core accesses the cache, TS is
equivalent to the line size (commonly 64 bytes).

BW =
ABR
RPR

× TS× f (1)

The RPR is applied globally to all logical groupings of
cores that are being regulated concurrently—we refer to these
groupings as regulation domains. Each domain has an ABR,
allowing unique per-domain budgets to be applied to each
cache bank.

Along with a budget configuration interface, fixed band-
width regulation requires mechanisms to track accesses (per-
bank counters in our design) and regulate these accesses as
necessary. We organize the per-bank access counters in a
Domain Control Interface (DCI), with a Core Control Inter-
face (CCI) containing regulation enable registers and domain
assignment registers.

Domain Control Interface. Each domain has its own
access counter registers. We denote these registers as Bank
Access Counters (BAC). A given domain has N of these
registers, where N is equal to the number of banks in the
shared cache. These registers are used solely for bandwidth
regulation. Note that this interface also includes the user
configurable per-domain ABR registers.

Core Control Interface. This interface includes logic for
assigning cores to domains and enabling regulation for a given
core. Domain assignment is handled through the Domain As-
signment Registers (DAR), enabling each core to be configured
to any one domain. A Regulation Enable Register (RER) is
generated for each core and allows for regulation to be enabled
or disabled seamlessly.

Figure 5 depicts the regulation unit’s control interface for an
arbitrary quad-core system configured to have two regulation
domains. In the CCI there is logic for the four cores. Cores 0-2
are assigned to Domain 0, with their RERs set high. Core 3 is

Core Control Interface

Domain Control Interface

Core 0 Core 1 Core 2 Core 3

Domain 0 Domain 1

Bank Access Counters Bank Access Counters

[Access Budget] [Access Budget]

[Domain] = 0 [Domain] = 0 [Domain] = 0 [Domain] = 1

[Reg Enable] = 1 [Reg Enable] = 1 [Reg Enable] = 1 [Reg Enable] = 0

Fig. 5: Example of group regulation in a quad-core system.
Core 0-2 belong to Domain 0, which is regulated. Core 3, on
the other hand, belongs to Domain 1, which is not regulated. In
this example, Domain 0 is for best-effort tasks while Domain
1 is for the real-time tasks.

assigned to Domain 1, but its RER is kept low, meaning that
the core’s accesses are not being regulated. Bracketed register
names (i.e. [Domain]) indicate that they are memory mapped
and user configurable.

C. Per-bank Bandwidth Monitoring Interface

In addition to per-bank regulation, we also provide a per-
bank bandwidth monitoring interface to enable software(OS)
based fine-grained monitoring and adaptive bandwidth regu-
lation capabilities. Specifically, our bandwidth regulation unit
includes per-bank monitoring registers that are separate from
the regulation interface. The per-bank monitoring registers
form the monitoring interface. For every core in the system,
a set of N counters is generated, where N is equal to the
number of banks. Similar to typical performance counters,
these counters can be reset and read by a user to determine
the per-bank bandwidth and access pattern of a core.

D. Regulation and Monitoring Algorithms

Algorithm 1 shows the pseudo-code of our regulation unit.
At a high level, it manages the global period counter (lines
1-8), the per-bank access counters, and throttling (lines 9-22).

Each clock cycle, PeriodCounter is incremented to advance
the current regulation period (line 7). The PeriodCounter
is reset when its value equals or exceeds the user defined
RegulationPeriod. As part of this reset, all bank budgets are
replenished by zeroing the BankCounters (lines 1-6).

Lines 9-22 make up the main body of our regulation
algorithm, with the logic being evaluated per-core and per-
bank (lines 9 and 10). In a given domain, if the budget of bank
j is depleted, then all further accesses to that bank are stalled
for the cores in that domain (lines 13-16). When a core sends a
bank access, the corresponding domain’s bank access counter
is incremented (lines 17-20). Specifically, bank accesses occur
on Channel A (A(i).isAccess), a TileLink notation which we
further explain below (Section V-E).

The monitoring interface is handled similarly. Algorithm 2
shows the pseudo-code for the monitoring interface. The logic
happens per-core and per-bank (line 1 and 2). Lines 3-8
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Algorithm 1 Per-bank Regulation Algorithm

1: if PeriodCounter ≥ RegulationPeriod then
2: PeriodCounter ← 0
3: for all c in BankCounters do
4: c ← 0
5: end for
6: else
7: PeriodCounter++
8: end if
9: for i ← 0 to nCores - 1 do

10: for j ← 0 to nBanks - 1 do
11: stall(i)(j) ← False
12: AccessIsBank(i)(j) ← (j == bankBits)
13: if (BankCounters(Domain(i))(j)≥AccessBudget)
14: and AccessIsBank(i)(j) then
15: stall(i)(j) ← True
16: end if
17: if A(i).isAccess and AccessIsBank(i)(j) then
18: BankCounters(Domain(i))(j)++
19: end if
20: end for
21: end for

are similar to the main body of 1, where a bank monitor
counter is incremented when that specific bank is accessed.
The difference being that there is no notion of domains or
period in the monitoring interface.

Algorithm 2 Per-bank Monitoring Algorithm

1: for i ← 0 to nCores - 1 do
2: for j ← 0 to nBanks - 1 do
3: AccessIsBank(i)(j) ← (j == bankBits)
4: if CoreAccess(i) and AccessIsBank(i)(j) then
5: BankMonitor(i)(j)++
6: end if
7: end for
8: end for

Note that our implementation is written in the Chisel hard-
ware description language (HDL) [24]. This allows our design
to support any number of domains and cache banks through
configurable parameters, eliminating the need to modify the
hardware design code.

E. Implementation

We implement our design using the Chipyard SoC Frame-
work [25]. In this subsection, we discuss details of both the
TileLink [26] interconnect specification and the Rocket Chip
SoC [27] as they relate to our implementation.

Our regulation unit interfaces with TileLink Cached (TL-C)
edges. TL-C edges connect the cores to the shared memory
subsystem and are cache coherent [26]. There are five channels
of communication on TL-C edges: A, B, C, D and E. We focus
on Channel A, which carries requests from the core’s private
caches to the shared caches and memories.

Regulation Unit

Core 0 Core 1

Bank 0 Bank 1

Bank Access
Counter

TL-C

System
Bus

Per-bank
monitor

Periphery
Bus

C0

C0 C1

C1

Fig. 6: Dual-core Rocket SoC with per-bank regulation unit

Figure 6 depicts our bandwidth regulation unit in a generic
dual-core Rocket Chip SoC design. The connections between
the cores and the shared system bus are TL-C edges. When a
data or instruction cache miss occurs in the private L1 caches
of the cores, a request is sent over Channel A. By monitoring
this channel we can track per-core accesses and regulate when
a domain’s bank budget is depleted.

For synchronizing messages on a given channel, TileLink
uses a ready-valid interface for sender/receiver handshaking.
To regulate a channel, we can simply set the ready and valid
signals to low, effectively stalling the request. Channel A
also carries information about the the memory address being
requested. From this we can extract the bank address bits
to count per-bank accesses. All TL-C channels going from
the core to the shared system bus pass through the regulation
unit. However, only Channel A is monitored for accesses and
regulated via the ready-valid signals. All other channels and
signals remain unmodified, passing through and connecting
directly to the shared system bus.

Along with connections to the system bus, the regulation
unit also connects to the periphery bus. This bus is utilized
by cores to read/write to the MMIO registers. Figure 6 also
depicts the BAC counter registers and monitoring interface
registers.

VI. EVALUATION

In this section, we evaluate hardware bandwidth regulation’s
ability to defend against the cache-bank DoS attack and show
the benefits of per-bank over all-bank bandwidth regulation.

A. Experimental Setup

We use FireSim, an FPGA accelerated cycle-exact full
system simulator [18]. This allows us to accurately evaluate the
performance of the proposed hardware design when deployed
in ASIC, which operates at a higher clock (e.g., >1GHz)
while being simulated on a FPGA at an actual clock speed
of 100MHz.
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Cores

1×BOOM, 1GHz, out-of-order, 3-wide, ROB:
96, LSQ: 24/24, L1: 32K(I)/32K(D)
2×Rocket, 1GHz, in-order, L1: 16K(I)/16K(D),
attached with Mempress traffic generators

Shared L2 Cache 1MB (16-way)
Memory 4GB DDR3

TABLE II: Evaluation platform specifications

Table II shows the basic characteristics of the tri-core
heterogeneous SoC we constructed on FireSim for evaluation.
The SoC is composed of one out-of-order core, the Berke-
ley Out-of-Order Machine (BOOM) [28], and two in-order
Rocket [27] cores, which are connected to Mempress traffic
generators [29]. All cores share a 1MB L2 cache and a 4GB
DDR3 main memory subsystem.

Note that cache bank-aware DoS attacks [12] require out-
of-order CPU cores to be able to generate many concurrent
memory requests on a specific target cache bank. As such,
we initially attempted to construct a quad-core BOOM based
SoC on FireSim using the LargeBoom configuration. However,
due to physical constraints of our FPGA platform, we were
unable to fit four large BOOM cores simultaneously in the
FPGA. Furthermore, there is an unresolved bug in BOOM that
results in a simulation hang when executing certain memory
intensive workloads on multi-core configurations*. As such, in
our simulation setup, we instead utilize the Mempress traffic
generator [29] to act as the cache bank attacker tasks.

Mempress is a configurable hardware unit that can generate
multiple parallel streams of requests to the shared memory
at varying access patterns. Implemented as an on-chip RoCC
accelerator [30], Mempress has access to the shared memory
subsystem. For all following experiments, the attackers will
be two separate Mempress units targeting the same last-level
cache (LLC) bank.

The Mempress traffic generators are attached to two Rocket
cores (one per core). Since Rocket cores are in-order, they
cannot create significant contention in the shared cache on
their own. However, Mempress enhances the cores by enabling
them to generate parallel accesses through the traffic genera-
tors, all while still meeting FPGA space constraints. All targets
are clocked at 1GHz.

For the shared L2 cache, we use SiFive’s open-source
inclusive cache [31], which is a real synthesizable hardware
cache design that supports a configurable number of cache
banks. The bank mapping bits start at address bit 6 for a two
bank design, while bits 6 and 7 are used in a four bank design.
Throughout our experimentation, we vary the number of LLC
banks to be either two or four, but the size and associativity
remain constant. Cache lines are set to be 64 bytes.

All simulations are run with the RISC-V version of Linux
kernel 6.2. For synthetic workloads, we use BkPLL (described
in section IV-A) and Bandwidth from [8]. Bandwidth accesses
a chunk of memory sequentially, striding at a step size of
a cache line. Both workloads can be configured to perform

*https://github.com/riscv-boom/riscv-boom/issues/690

either read or write accesses. Lastly, the San Diego Vision
Benchmark Suite (SD-VBS) [32] with CIF input format is
used for real-world evaluation.

To ensure all slowdowns are solely due to bank contention
and not impacted by set conflict misses, we apply the PALLOC
patch to the Linux kernel [23] to enable cache set partitioning.
Using PALLOC, we create two partitions dividing the LLC
of 1MB into equal segments of 512KB each. We assign
one partition to victim tasks and one partition to best-effort
(attacker) tasks.

B. SD-VBS Profiling

To guide our evaluation, we first profile the workloads from
SD-VBS to find each workload’s LLC bandwidth and bank
access pattern. With our implemented per-bank monitoring
interface, we collect these results on a single-core BOOM
system with a four bank LLC. It should be noted that we
exclude multi ncut due to long simulation times.

Workload LLC Read B/W LLC Write B/W
Disparity 2663.1 1330.6
MSER 967.9 270.7
Sift 356.9 90.6
Stitch 795.1 405.1
Localization 55.9 0.326
Tracking 405.8 173.1
SVM 179.6 45.5

TABLE III: SD-VBS LLC bandwidth characteristics (MB/s)

Table III shows the collected bandwidth results. From this,
we select Disparity, MSER and Stitch for best-effort task
evaluation in section VI-F, as workloads that do not make
frequent accesses to the LLC will not be noticeably affected by
regulation. Through experimentation, we determine 700MB/s
to be a suitable bandwidth threshold.

Workload Bank 1 Bank 2 Bank 3 Bank 4
Disparity 5723148 5694269 5679896 5693761
MSER 476464 467716 466571 468930
Sift 1938519 1908043 1868291 1922350
Stitch 3867787 3821181 3786533 3896458
Localization 309455 1843 1647 1795
Tracking 496624 252594 251577 259686
SVM 540773 505279 557619 525794

TABLE IV: SD-VBS per-bank LLC access counts

Table IV shows the per-bank access counts of the SD-
VBS workloads across the four cache banks. In our simulated
design, a four-bank LLC uses address bits 6 and 7 to index
the banks. Of the seven workloads, Disparity, MSER, Sift and
Stitch have an even access spread across all banks. On the
other hand, Localization and Tracking have heavier traffic
to specific banks. Localization specifically sees 58× more
accesses directed at bank one than the other three banks
combined and 187× more accesses than the least accessed
bank (bank two). Tracking sees 2× more accesses directed
at bank one than the least accessed bank. These results show
that, in most benign (not malicious) workloads, requests to the
shared cache are generally distributed evenly across the cache
banks, although there are some notable exceptions.
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As such, if we use the all-bank regulation approach to
defend against potential cache-bank DoS attacks, which target
only one bank, we significantly under utilize the cache band-
width when benign workloads are executed on the throttled
best-effort cores, as we will show later in this section.

C. Cache Bank-Aware DoS Attack on FireSim

To begin our experimentation, we first mount the cache
bank-aware DoS attack [12] in our simulation environment,
establishing the maximum base-line slowdown for our setup.
These results are collected on a system with two banks in the
LLC.

The experiments are set up as follows. We utilize the
BkPLL workload described in Section IV-A as our victim
task. The victim is configured to perform reads (denoted as
BkPLLRead), has a working-set-size (WSS) of 128KB and
is executed on the BOOM core. The Mempress attackers are
configured to each have a WSS of 64KB. We first run the
victim in isolation and measure its performance. The attackers
are then co-run with the victim in order to see the attackers
impact on the victim’s performance. The attackers are applied
in the two following scenarios:

1) Diff. Bank: The attackers and the victim target different
(disjoint) cache banks (victim: bank 0, attacker: bank 1)

2) Same Bank: Both the attackers and the victim target
the same cache bank (both attacker and victim: bank 0).
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Fig. 7: Impact of cache bank-aware DoS attack on synthetic
read victim in the FireSim platform. The bank attackers target
is varied.

Figure 7 shows the results. Note first that, when the attackers
and victim target separate banks, the victim experiences no
slowdown. Yet, when the same bank is targeted the victim
experiences a 3.52× slowdown from the write attackers. The
results are very similar to what we have observed on the
BeagleV platform in Section IV-A, demonstrating the validity
of our evaluation setup. To parallel the conclusion on the real
platforms, we observe complete temporal isolation when the
victim and the attackers target different banks. This confirms
that any contention created by the attacker is at the bank level,
not the interconnect (bus) level.

Three key takeaways are: (1) each cache bank should be
considered as an independent shared resource, which has

limited bandwidth. If the bandwidth is over-saturated, then
contention occurs and the subsequent requests to the bank
will be delayed; (2) the targeted bank DoS attack is effective
because it saturates the bank’s limited bandwidth; (3) Using
bandwidth regulation to mitigate contention by preventing
bandwidth saturation will be effective.

D. Evaluation of Hardware Bandwidth Regulation

In this experiment, we evaluate the effectiveness of BRU’s
bandwidth regulation in providing temporal isolation to the
victim task in the presence of cache bank DoS attackers.

For this experiment, we use all-bank regulation as im-
plemented in the baseline BRU [16]. As discussed earlier,
BRU allows for cores to be regulated alone or in groups
using domains. Using this capability, we create a “real-time”
domain for the victim task and a “best-effort” domain for the
attackers. We then assign the BOOM core to the real-time
domain and the two other Rocket cores, enhanced with the
Mempress traffic generators, to the best-effort domain. As in
Section VI-C, Mempress instances are configured to generate
overwhelming traffic to cache bank 0, to simulate the worst-
case. For the victim tasks, we use BkPLLRead (synthetic)
and Disparity (real-world), both configured to target cache
bank 0. We vary the best-effort (attacker) domain’s bandwidth
budget from 640MB/s to 15.36GB/s, measuring the slowdown
that each victim experiences normalized to the solo victim
run (no attackers). The budget is set by programming the
Regulation Period Register to 400 cycles (400 ns in our
setup), and increasing the best-effort domain’s Access Budget
Register from 16 accesses (640MB/s) per-period to 384 ac-
cesses (15.36GB/s) per-period. Unless otherwise mentioned,
all subsequent experiments use a regulation period of 400
cycles.
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Fig. 8: Impact of increasing attacker bandwidth budget on
BkPLLRead and Disparity. The WSS of attackers is 64KB.

Figure 8 shows the results. As we can see, up to an attacker
budget of 1.28GB/s, the BkPLLRead victim experiences a
1.03× slowdown, which is small and acceptable in may
applications. Beyond this threshold, however, the victim’s
execution begins to be impacted, increasing to 1.12× at a
budget of 2.56GB/s and growing to 3.52× at 15.36GB/s. Note

8



that 15.36GB/s is bigger than the observed peak cache memory
bandwidth of the attackers, which is effectively identical to
not using the bandwidth regulation at all. When we repeat
the experiment with Disparity as the victim, the performance
degrades at a slower rate, peaking only at 1.39× slowdown
when the attackers are allotted their full bandwidth. This
is because Disparity, unlike BkPLLRead, generates fewer
accesses to the shared cache that are more evenly distributed
among the cache banks. In other words, Disparity is not the
worst-case and its performance impact from the cache bank
attack will be upper bounded by that of the BkPLLRead
victim. Since Disparity has the highest measured bandwidth of
the SD-VBS workloads (see section VI-B), all other workloads
are similarly upper bounded.

The key takeaways are (1) cache bandwidth regulation
can effectively regulate the attackers to provide worst-case
slowdown guarantees for the victim; (2) the regulation budget
should be set based on the worst-case scenario when both the
attackers and the victim target one single cache bank.

E. All-Bank vs. Per-Bank Regulation

In the following experiments, we evaluate how different
bandwidth regulation methods impact the performance of the
victim and the attackers.

We first show the impact of the all-bank and per-bank
regulation methods in providing isolation guarantees to the
victim task in the presence of the co-running cache-bank DoS
attacks.

The experiment setup is the same as before: the victim
(BkPLLRead) runs on the real-time domain and the attackers
run on the best-effort domain, which is regulated. The regula-
tion budget of the best-effort domain is configured at 1.28GB/s
(found to be the maximum allowable budget in the previous
experiment) in both all-bank and per-bank regulation methods.
Note that under per-bank regulation, each bank receives the
budget of 1.28GB/s.
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Fig. 9: Normalized slowdown of the victim when a 1.28GB/s
regulation budget is applied to throttle write attackers under
both all-bank and per-bank regulations.

Figure 9 shows the results. When running without regula-
tion, we see the same 3.52× slowdown of the victim as was

shown in the previous section. On the other hand, for both
regulation schemes, the victim sees only a 1.03× slowdown
with regulated attackers. This is because in both per-bank and
all-bank regulation methods, only one cache bank is stressed
by the attacks and the requests to the same bank are charged
equally in both regulation methods.

The results demonstrate that all-bank and per-bank band-
width regulation methods are identical in protecting the victim
in the worst-case (i.e., the cache bank DoS attackers are
running on the best-effort domain). However, they will have
very different effects in non worst-case scenarios as we will
show in the following.

Next, we evaluate the throughput impact of the regulation
methods on the regulated cores. For this, we use the Bandwidth
workload from [8] as described in section VI-A. We configure
the workload to perform read accesses with a WSS of 128KB
(4× the L1 size). The workload is pinned to the system’s
BOOM core. We measure the slowdown normalized to a non-
regulated run of the workload. This experiment is performed
on four different LLC designs as follows:

1) All-bank regulation with two LLC banks.
2) Per-bank regulation with two LLC banks.
3) All-bank regulation with four LLC banks.
4) Per-bank regulation with four LLC banks.
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Fig. 10: Normalized slowdown of Bandwidth using per-bank
and all-bank regulations on two and four bank cache config-
urations. Regulation budget is 1.28GB/s. Workload is pinned
to BOOM core.

Figure 10 shows the results. For the synthetic best effort
task, regulating the entire cache as one unit (all-bank) results
in performance degradation of 5.47× in the two-bank case and
5.49× in the four-bank case. In contrast, per-bank regulation
sees a 2.94× and a 1.50× degradation in the two and four-bank
cases, respectively. To directly compare, per-bank sees a 1.86×
and 3.66× improvement over all-bank in the respective cases.
Recall that this improvement is due to per-bank regulation
allotting each bank a budget of 1.28GB/s. It should be noted
that one would expect a 2× difference in the two bank cases
and a 4× difference in the four bank cases. Of course, our
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prototype has some inefficiencies, however we deem these
acceptable as the benefits of per-bank regulation are still clear.

From this synthetic experiment, we draw two major conclu-
sions. First, per-bank regulation demonstrates a clear improve-
ment in best-effort task throughput compared to the overly
pessimistic all-bank regulation. This throughput improvement
is achieved all while guaranteeing the same temporal isolation
of victim tasks. Second, performance benefits of our per-
bank implementation scale effectively as the number of banks
increases.

F. Impact of Per-Bank Regulation on Real-World Applications

The Bandwidth workload is a synthetic workload, not rep-
resentative of real-world applications. We further evaluate the
benefits of per-bank regulation over all-bank regulation using
a set of benchmarks from SD-VBS [32] and SPEC2017 [33].
Specifically, we select Disparity, MSER and Stitch from SD-
VBS (all CIF input) and gcc, xalanc and mcf from SPEC2017
(ref input). The SD-VBS benchmarks are chosen because they
are relatively LLC bandwidth intensive workloads (see Sec-
tion VI-B). Likewise, the SPEC2017 benchmarks are chosen
as they are relatively cache sensitive and have fast simulation
run times.

For these experiments, we configure a system with one
BOOM core to avoid any cross-core interference. We set a
regulation budget of 1.28GB/s and measure each workload’s
performance, computing the slowdown normalized to an un-
regulated run of the workload. As was done in section VI-E,
we evaluate using both two bank and four bank cache designs.

Figure 11 shows the results for our selected workloads. In
general, we see improvement when using per-bank regulation
over all-bank regulation. Moreover, performance scales well
from two to four banks, such as in Disparity which suffers less
slowdown as more cache banks are used. Specifically, in the
two-bank case, Disparity sees a 2.04× and 1.86× slowdown
under all-bank and per-bank regulation respectively. When
the cache is configured with four banks, all-bank regulation
creates a 2.33× slowdown, while per-bank regulation has only
a 1.38× slowdown. Thus, Disparity is an excellent example
of the improvement of per-bank over all-bank regulation and
the performance scalability as the number of banks increases.
The results for MSER, Stitch and gcc also show similar im-
provement when going from an all-bank to per-bank regulation
scheme.

These experiments clearly demonstrate that, as with the
synthetic case, real-world workloads see noticeable improve-
ment when using per-bank regulation over all-bank regulation.
Again, it must be emphasized that this improvement is accom-
panied by per-bank regulation’s guarantee of isolating victim
tasks to the same degree as all-bank regulation. Overall, this
highlights the superiority of per-bank regulation over all-bank.

G. Software vs. Hardware Bandwidth Regulation

In this experiment, we compare the software-based cache
bandwidth regulation method proposed in [12] with our
hardware-based bandwidth regulation.

Ideally, we would like to implement the software-based reg-
ulation approach directly on experimental platform. However,
because we leverage Mempress traffic generators instead of
using BOOM CPU cores for the attack, the software approach
cannot be properly tested. Instead, we implement the software
regulation approach on the BeagleV board, which is equipped
with four RISC-V out-of-order cores (see Section IV-A) com-
parable to the BOOM core used in our testbed.

On the BeagleV platform, we observe up to 76× slowdown
of the best-effort (attacker) tasks (throttled at 100MB/s) for the
software regulation method to protect the victim. These results
are in-line with the up to 300× slowdown reported in [12] on
the Pi 4 platform. While using the hardware-based regulation
methods in our FireSim setup, the worst-case slowdown of
the attackers is up to 5.49× for all-bank regulation, and up
to 2.94× slowdown for the per-bank regulation in 2-bank
configuration. The slowdown is further reduced down 1.5×
in the 4-bank configuration.

Note that the CPU performance of the BeagleV platform is
on-par with that of our simulation setup. As such, we posit
that the dramatic performance differences we observe come
from the superior effectiveness of hardware-based regulation
over the software-based one.

H. Hardware Implementation Overhead

To evaluate the cost-to-performance benefit of our per-bank
design, we synthesize a quad-core BOOM SoC and perform
power and area analysis. We run place and route from the Ca-
dence Suite’s Innovus tool, along with the Hammer [34] VLSI
flow scripts targeting the ASAP 7nm technology node [35],
to characterize the overhead and compare to the all-bank
implementation in [16].

Implementation Regulation Unit (nm2) SoC (nm2) Percent
All-Bank [16] 429 465305 0.09%

Per-Bank (Ours) 1372 466248 0.29%

TABLE V: Comparative area analysis of the two regulation
unit implementations. Percent is the area consumed by the
implementation from the total SoC area.

Table V shows the area utilization of the two configurations
after place and route has been completed. We find that the area
overhead added in our per-bank design comes to 3.2× that of
the all-bank implementation. However, it is still less than 0.3%
of the entire SoC area.

Design Under Test Total Power (mW) Percent
SoC 110 –

All-Bank [16] 0.67 0.6%
Per-Bank (Ours) 2.36 2.1%

TABLE VI: Comparative power analysis of the two regulation
unit implementations. Percent is the power consumed by the
implementation from the total SoC power.

Table VI shows the power analysis results. As shown, the
per-bank design again consumes 3.5× that of the all-bank
design, yet it is still only just over 2% of the total power. It
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Fig. 11: Comparison of all-bank and per-bank regulation when running real-world workloads. Each workload is run with a
regulation budget of 1.28GB/s. Slowdown is in comparison to the unregulated run.

can be stated that the area and power overhead of our per-bank
design is acceptable considering its significant performance
benefits seen in previous sections.

VII. RELATED WORK

In the real-time community, correctly estimating worst-case
task execution timing is of paramount importance, yet it has
been difficult to do so in multicore systems due to the vast and
diverse set of shared hardware resources that can dramatically
impact task execution timing. Microarchitectural DoS attacks
on shared hardware resources are therefore important for the
real-time community to study as they can shed light on the
impacts on worst-case timing. Moscibroda et al. proposed
the “memory performance attack” [36], which exploits the
DRAM controller’s FR-FCFS [37] scheduling policy to in-
duce contention. Attacks on shared cache space [38], bus
bandwidth [39], shared cache MSHRs [8] and write-back
buffers [9], shared GPU [40], and shared cache between the
CPU and the integrated GPU [41] have been explored. Most
recently, bank contention on multi-bank shared caches has
shown to be an effective DoS attack avenue [12], which we
focus on in this work. Several studies have investigated the
effects of these microarchitectural attacks in actual cyber-
physical systems [42], [43].

Providing strong isolation in multicore has long been a topic
of intense research over the past two decades. This includes
various software and hardware mechanisms to manage the
shared resources [13], [44]–[53]. Broadly, these resource man-
agement studies fall into two categories: space partitioning and
bandwidth throttling. Cache space partitioning has been exten-
sively studied in the real-time community to prevent unwanted
cache-line evictions of high-priority real-time tasks by lower
priority tasks. Cache space partitioning can be realized in
software, through page coloring [54], or in hardware, such as
the way-based partitioning capabilities found in Intel RDT [14]
and ARM MPAM [15].

Memory bandwidth throttling is another extensively stud-
ied mechanism for isolation. Most software-based memory

bandwidth throttling techniques utilize the CPU core’s perfor-
mance counters to monitor the bandwidth. Then the periodic
timers and interrupts regulate the allowed bandwidth of the
cores at fixed time intervals [13], [53]. MemPol [55] instead
utilizes a dedicated real-time micro-controller unit (MCU)
to asynchronously monitor and regulate the memory traffic
through polling. This approach reduces the interrupt overhead
at the expense of wasting the real-time MCU. Hardware-based
bandwidth regulation can eliminate such software overhead
and can be enforced at a very fine granularity (in cycles
rather than in milliseconds). BRU [16], Intel RDT [14],
ARM MPAM [15] all provide memory bandwidth regulation
capabilities in hardware.

Until recently, cache bandwidth has received little attention
as it was believed to be of less importance compared to
cache space partitioning or memory bandwidth. However,
a recent study demonstrated its implications in multi-bank
caches within high-performance multicore architectures [12].
The study proposed a software cache bandwidth throttling
mechanism as a potential mitigation solution, but acknowl-
edged the unacceptably high overhead of such a software
implementation. In this work, we present a hardware solution
to manage cache bandwidth in real-time systems. To the best
of our knowledge, we are the first to present a hardware-based
cache bandwidth regulation solution. More importantly, we are
the first to propose a per-bank cache bandwidth regulation
approach that can significantly improve average throughput
on the regulated cores.

VIII. CONCLUSION

In this paper, we presented a per-bank cache bandwidth
regulation approach to effectively and efficiently mitigate
potential cache bank bandwidth contention. We make the
observation that the contention occurs at the individual cache
bank rather than at the interconnect (bus), therefore our key
contribution is to apply a well-known bandwidth regulation
mechanism at the cache bank level. We evaluate that this ap-
proach can effectively minimize the effect of worst-case cache
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bank contention while maximizing allowed cache bandwidth
and guaranteeing the isolation. We implemented the proposed
per-bank regulation solution in hardware by extending an
open-source bandwidth regulator design. We demonstrated
its effectiveness in providing isolation guarantees to critical
real-time tasks in the presence of adversarial cache bank
DoS attackers. Furthermore, we illustrated that our per-bank
bandwidth regulation approach can significantly improve per-
formance of throttled best-effort tasks without compromising
isolation guarantees allotted to real-time tasks. Specifically,
we achieved up to 3.66× throughput improvement over the
baseline bank-oblivious bandwidth throttling approach. As
future work, we plan to apply the proposed per-bank regulation
approach to DRAM banks.
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J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC, 2012.

[25] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt,
J. Wright, J. Zhao, Y. S. Shao, K. Asanović, and B. Nikolić, “Chipyard:
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